Mechanism of bacterial gene rearrangement: SprA-catalyzed precise DNA recombination and its directionality control by SprB ensure the gene rearrangement and stable expression of spsM during sporulation in Bacillus subtilis

نویسندگان

  • Kimihiro Abe
  • Takuo Takamatsu
  • Tsutomu Sato
چکیده

A sporulation-specific gene, spsM, is disrupted by an active prophage, SPβ, in the genome of Bacillus subtilis. SPβ excision is required for two critical steps: the onset of the phage lytic cycle and the reconstitution of the spsM-coding frame during sporulation. Our in vitro study demonstrated that SprA, a serine-type integrase, catalyzed integration and excision reactions between attP of SPβ and attB within spsM, while SprB, a recombination directionality factor, was necessary only for the excision between attL and attR in the SPβ lysogenic chromosome. DNA recombination occurred at the center of the short inverted repeat motif in the unique conserved 16 bp sequence among the att sites (5΄-ACAGATAA/AGCTGTAT-3΄; slash, breakpoint; underlines, inverted repeat), where SprA produced the 3΄-overhanging AA and TT dinucleotides for rejoining the DNA ends through base-pairing. Electrophoretic mobility shift assay showed that SprB promoted synapsis of SprA subunits bound to the two target sites during excision but impaired it during integration. In vivo data demonstrated that sprB expression that lasts until the late stage of sporulation is crucial for stable expression of reconstituted spsM without reintegration of the SPβ prophage. These results present a deeper understanding of the mechanism of the prophage-mediated bacterial gene regulatory system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developmentally-Regulated Excision of the SPβ Prophage Reconstitutes a Gene Required for Spore Envelope Maturation in Bacillus subtilis

Temperate phages infect bacteria by injecting their DNA into bacterial cells, where it becomes incorporated into the host genome as a prophage. In the genome of Bacillus subtilis 168, an active prophage, SPβ, is inserted into a polysaccharide synthesis gene, spsM. Here, we show that a rearrangement occurs during sporulation to reconstitute a functional composite spsM gene by precise excision of...

متن کامل

Molecular Detection of Lipase A gene in Putative Bacillus subtilis Strains Isolated from Soil

The present study was undertaken to screen the soil samples collected in Iran for the presence of the Bacillus subtilis lipase A gene. The bacterial colonies obtained from the collected soil samples were examined by physical appearance, biochemical tests and  the polymerase chain reaction (PCR). Only four colonies were identified as putative B. subtilis strains and all contained the lipase A ge...

متن کامل

MOLECULAR CLONING AND EVALUATION OF WILD PROMOTER IN EXPRESSION OF BACILLUS SPHAERICUS PHENYLALANINE DEHYDROGENASE GENE IN BACILLUS SUBTILIS CELLS

To evaluate the role of wild promoter of L-phenylalanine dehydrogenase (PheDH) gene, referred to as pdh, from Bacillus sphaericus in expression, cloning of pdh gene in Bacillus subtilis was performed. The whole pdh gene was cloned in pHY300PLK shuttle vector and amplified, construct (pHYDH) then transformed in B. subtilis ISW1214 and E. coli JM109. The pdh endogenous promoter presented no effec...

متن کامل

Cloning and Enhanced Expression of an Extracellular Alkaline Protease from a Soil Isolate of Bacillus clausii in Bacillus subtilis

in the detergent industry. In this study, the extracellular alkaline serine protease gene, aprE, from Bacillusclausii was amplified by PCR and further cloned and expressed in B. subtilis WB600 using the pWB980 expression vector. Protease activity of the recombinant B. subtilis WB600 harboring the plasmid pWB980/aprEreached up to 1020 U/ml, approximately 3-folds higher than the nativ...

متن کامل

A Recombination Directionality Factor Controls the Cell Type-Specific Activation of σK and the Fidelity of Spore Development in Clostridium difficile

The strict anaerobe Clostridium difficile is the most common cause of nosocomial diarrhea, and the oxygen-resistant spores that it forms have a central role in the infectious cycle. The late stages of sporulation require the mother cell regulatory protein σK. In Bacillus subtilis, the onset of σK activity requires both excision of a prophage-like element (skinBs) inserted in the sigK gene and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017